Jbt iw0401 006 схема

Jbt iw0401 006 схема

Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400

) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400

) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC

220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W. На плате светодиодов надпись 3WG45B.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W. На плате светодиодов надпись BL-5650.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.

В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.

В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.

В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.

В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.

В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма — микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном.. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации..

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление

230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондера есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока — микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A. Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 146мА, 1,3W. Для справки, лампа потребляла от

220V 105мА 23W до переделки и 70мА 15W после.

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.

Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп.. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы..

Всё то же самое нужно делать и в процессе ремонта вышедших из строя ламп, в которых чаще всего горят светодиоды, а реже вздуваются конденсаторы. В лампах с последовательной схемой включения светодиодов сгоревшие закорачиваем (если последовательных две группы — то в каждой должно остаться одинаковое количество светодиодов), в параллельных все утухшие светодиоды меняем на целые (увы, или не будет работать группа, но можно с умом и коротить в каждой группе поровну), и обязательно снижаем ток (потому что все светодиоды немного деградировали или в схемах без регулятора тока возрос ток после закорачивания светодиодов).

Файл для расчетов

Оставляйте комментарии по файлу, кому что нужно рассчитать..

Тэги: LED driver, 9918C, BP3102, energo efficiency, LED lamp, Понижение яркости, Как уменьшить яркость, Уменьшаем светимость — увеличиваем срок службы. Срок жизни.

32 thoughts on “ Продление срока службы светодиодных ламп. Понижение тока/ремонт ”

После перегрева сгорели светодиоды на лампах с конденсатором 135. Замкнул в каждой лампочке светодиод и поменял кондёр на 105 (1 мкф), теперь чуть слабее светит, снял колпачок с лампы, но лампа так же горячая.

Надеюсь, что теперь проработает дольше.

А как быть с энергосберегающими лампами?

Занёс статью в заметки, спасибо за инфу.

Здравствуйте. У меня лампа 9W на основе мс9918с. Вылетел 1 светодиод-остальные15 целые. Подскажите какое нужно поставить сопротивление -чтобы еще поработала?Причина по всей видимости была в том-что именно под этим диодом отсутствовала паста/ктл. Спасибо.

Первое, нужно обязательно уменьшить ток через светодиоды, видимо, подошло время и будет цепная реакция, скорее всего будут умирать ослабевающие (перегретые и деградирующие).. Ну и улучшить теплоотвод (снять пластиковый колпачок, если нет влажности и лампу не заденут).. Отпишите сюда все параметры лампы и какие резисторы на средней ноге микросхемы? Если такие же, как в описании, то смело уменьшайте на указанные параметры.
Второе, у вас на микросхеме 9918C стабилизация тока и нет переходного трансформатора (как в сложных схемах светильников), и если один светодиод вылетел, то его нужно смело замыкать и не морочиться с резистором. Если бы вылетело много светодиодов и драйвер бы перестал запускаться, тогда..

Читайте также:  Sss 6698 bb прошивка

Значит можно просто замкнуть светодиод.R-средней ноги 2.2ом.Использовать без рассеивателя не комфортно/смысл тогда этой лампы/.Значит важен ток-а то что 290в -не важно?.

Повышаем 2.2 Ома до 2.4 или 2.5 Ома — Если таких нет, то ищем два резистора 1R2 последовательно или два 5R1 или 4R7 параллельно, чтобы примерно попасть в 2.4 — 2.5 Ома..
Чем меряли 290 Вольт и где?

290- это на выпрямительном конденсаторе и на выходе на светодиоды/без нагрузки-не стал рисковать диодами.

должно быть постоянки 310V на конденсаторе — если в сети 220V переменки, мабуть кондёр усох..
290 на выходе на светодиоды — это без нагрузки, а при нагрузке нужно померять ток на светодиодах, потом изменить резистор и ещё раз померять для пущей проверки того, что ток через светодиоды уменьшился

У нас 200-это праздник.А так 170-180 иногда и160.Я понял -Спасибо.Но к сожалению омных сопротов и данный момент нет.Есть такие как и там стоят 2.2ом.Куплю-отпишусь.Кстати еще один вопрос.Есть светильник на 4 линейки по18 шт. На 1 выгорела мс и прилегающие к ней.На 2 потухли 3 линейки /4не стал ждать -отключил .Драйвер серьезный.На плате -JBTIW0401-006 REV 2.1 20130715 . МС IW3623-00 R2MGL тр-р D13007 тр-р7N65.транс.JBT-IW0401-29 и на выходе 3 ногий диод/нехочу тормошить а так не видно/.Как будто -работает но—-U-менятся от35 до 24 и обратно/без нагрузки/.Не подскажьте что ЭТО и как лечить?

Если без нагрузки напряжение после драйвера светодиодов скачет — это может быть нормально, запускается и отсекается по превышению напряжения или сбою частоты, перегрузке, отсутствию нагрузки.. Нужно проверять под нагрузкой, только тогда можно 100% сказать, робит он или нет, но можно и спалить все линейки светодиодов, если драйвер даст больше тока. а линейки можно заменять резисторами нагрузки — посчитать и поставить соответствующего сопротивления и мощности (если нет большой мощности, а есть в два-три раза меньше, можно резисторы поместить в стакан с водой, чтобы не сгорели от перегрева, в пять раз меньше по мощности горят и в в воде, тут поможет только жидкий азот )) )

Для проверки светодиодов берём лабораторный БП с регулируемой отсечкой тока и регулируемым напряжением, тестируем светодиоды и делаем выводы.
К примеру, DC DIY Kit плавной регулировкой ток короткого замыкания ОГРАНИЧЕНИЯ защиты 0-30 В 2mA-3A на али и индикатор 0-100В 0-10А, мощный трансформатор 80-100 Вт на 24-36В переменки в глуши не проблема найти из старого ТВ или муз центра..

Ставим ток 20мА и плавно повышая напряжение, проверяем линейки светодиодов, напряжение, при котором светодиоды ярко загорятся и есть рабочее минус 3-5%, если повысить напряжение всего лишь на эту самую мелочь 3-5%, ток возрастёт до рабочего, а это может быть и 50мА и 100мА для разных типов светодиодов.. Нельзя ставить ток 100мА, потому как если светодиоды на 50мА, они погорят сразу.
Если напряжения 30В не хватает зажечь всю линейку, то крокодилами цепляемся на один светодиод, вычисляя его рабочее напряжение, это может быть и 3, и 6, и 9, и 11 вольт. Ток определить сложнее по одному светодиоду, но можно посчитать потребляемую мощность всего светильника и поделить на кол-во светодиодов, получив мощность одного светодиода, а затем и его рабочий ток. Погрешность может быть до 20% и в плюс и в минус, посему проверяем себя дважды и трижды и в том числе по внешнему виду светодиодов, ища полный аналог.

Определившись 100% с напряжением и током линеек светодиодов, также понижаем ток в драйвере, чтобы не дожечь деградировавшие в тяжелых условиях светодиоды, какие можно закупить на али пачками на 100-200 р. Светодиоды лучше брать 2700К желтоватые, а не 6000К ярко синие (портят глаза, в них нет красного и в обоих нет зеленого спектра), и дополнять светильник отдельно зелеными светодиодами (для зрения, 18 лет дети в южной корее все слепые, а в этой стране максимум гаджетов и светодиодного освещения).

По вашему светильнику непонятно, на каждую линейку светодиодов отдельный драйвер с «мс» микросхемой? Если драйвер сдох, то, можно большой светильник запустить от драйвера одной светодиодной лампы, в которой импульсный токовый стабилизатор, к примеру с 300В на 110мА, 80В, 9W, и в четырех линейках светильника светодиоды на 55мА, 36W. Четыре линейки подключаются в параллель, получается 220мА 160В. Если они в пол-накала загорятся на драйвере без переделок, то ток на микросхеме драйвера светодиодной лампы повышается со 110мА до 200мА путём уменьшения токоизмерительного резистора меньше чем в два раза, дроссель (если будет греться) повышается по размеру в полтора-два раза при сохранении индуктивности (а это связано с микросхемой и с рабочей частотой преобразования) и ёмкости по 300В и по выходному повышаются в два раза по микрофарадам путём замены.. Микросхема импульсная, мелкая, может будет сильнее греться, и на неё нужно термоклеем приклеить радиатор..

Измерять постоянный ток на светодиодах до 200 мА можно прибором D-830B, как обычно, в разрыв цепи, а на 10А может быть погрешность..

Что непонятно, спрашивайте.

Спасибо за ответ.После праздников буду заниматся.Фото драйвера я скину Вам на почту. С НОВЫМ ГОДОМ. Здоровья и успехов во всех Ваших делах.

Как правило, в светодиодных лампах сильно завышен рабочий ток светодиодов, в связи с чем светодиоды деградируют и выходят через год — два из строя.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400

) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400

) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC

220-240V на основе драйвера микросхемы BP3122 (8 ног) и трансформатора 12x12x10мм применяются 6 последовательно (3 планки)-параллельно (по 2 светодиода на планке) включенных светодиодов на 3.13В 85мА, 0,3W. На светодиоды идёт 9.4В, 170мА, 1.6W. Для понижения тока нужно увеличить резистор c 1 на 2 ногу CS (BP3122) с 2.2 ома до 2.7 ома путём замены или допайки последовательно R50 — 0.5 омного резистора. Мощность снизится на 19%. Рабочее напряжение на светодиодах снизится до 9 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,21W. На плате светодиодов надпись 3WG45B.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 10 последовательно (по 5 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,1В 90мА, 0,3W. На каждой планке стоят 2 светодиода из разных групп. На 2 группы светодиодов идёт 15,4В, 180мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 2.2 ома до 3.2 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 32%. Рабочее напряжение на группах светодиодов снизится до 15,2 Вольта, ток до 120мА, соответственно для одного светодиода 3,0В, 60мА, 0,2W. На плате светодиодов надпись BL-5650.

В лампах 5W на AC 85-265V на основе драйвера микросхемы BP3102 (8 ног) и трансформатора 10x10x10мм применяются 8 последовательно (по 4 в группе)-параллельно(в 2 группы) включенных светодиодов на 3,2В 110мА, 0,35W. На каждой планке стоят 2 светодиода из одной группы. На 2 группы светодиодов идёт 12,8В, 220мА, 3W. Для понижения тока нужно увеличить резистор на 4 ноге CS (BP3102) с 1.8 ома до 2.8 ома путём замены или допайки последовательно 1R0 — 1 омного резистора. Мощность снизится на 36%. Рабочее напряжение на группах светодиодов снизится до 12,2 Вольта, ток до 140мА, соответственно для одного светодиода 3,0В, 70мА, 0,2W.

В лампах 9W E27 4000K на AC 220V на основе стабилизатора тока — микросхемы BP2832 2832 (8 ног) применяется круг A60-2835-26 из 2 параллельных линеек по 13 последовательно включенных светодиодов, на 6,15В 57мА, 0.35W. На все светодиоды идёт 80В, 114мА, 9W. Для понижения тока нужно увеличить резистор 1R65 до 1R8 или 2R0 ома путём замены (я поставил параллельно 2 и 22 ома, итогом 1,8 Ома). Мощность снизится на 9-18%, до 8W-7.5W. Рабочее напряжение на группах светодиодов снизится до 78 Вольт, ток до 52-47мА, соответственно для одного светодиода 6В, 52-47мА, 0,31-0,28W.

В лампах 10W E27 4200K на AC 230V FLL-A60-9-230-4K-E27 на основе стабилизатора тока — микросхемы BP9916C 9916C (8 ног) применяется круг A60-2835-1W-10C из 10 последовательно включенных светодиодов, на 8,9В 90мА, 0.8W. На все светодиоды идёт 89В, 90мА, 8W. Для понижения тока нужно увеличить параллельно включенные резисторы 5R9 и 6R8 ом, до 5R9+2R2 и 6R8 — с вычисленного 3.15 ома до 3.7 ома путём замены или допайки последовательно с 5,9 омным ещё 2,2 омного резистора. Мощность снизится на 17%, до 7W. Рабочее напряжение на группах светодиодов снизится до 87,6 Вольт, ток до 79мА, соответственно для одного светодиода 8,76В, 79мА, 0,7W.

В лампах 11W на AC 220V на основе стабилизатора тока — микросхемы BP9918C 9918C (3 ноги) применяются 18 последовательно включенных светодиодов, на 11В 55мА, 0,6W. На все светодиоды идёт 200В, 55мА, 11W. Для понижения тока нужно увеличить параллельно включенные резисторы 10 и 12 ом, до 20 и 12 ом (средняя нога CS BP9918C) — с вычисленного 5.5 ома до 7.5 ома путём замены или допайки последовательно с 10 омным ещё 10 омного резистора. Мощность снизится на 28%, до 8W. Рабочее напряжение на группах светодиодов снизится до 180 Вольт, ток до 44мА, соответственно для одного светодиода 10В, 44мА, 0,44W.

В лампах 12W на 220В 50Гц, 4000K E27 на основе стабилизатора тока — микросхемы BP2833A 2833A (8 ноги) на плате L2029-03-40 распаяны 23 последовательно включенных светодиода, на 3,2В 162мА, 0,52W. На все светодиоды идёт 73,6В, 162мА, 12W. Для понижения тока нужно увеличить параллельно включенные резисторы 2R10 и 2R70 ом, до 2R10 и 3R2 ом (8 нога BP2833A) — с вычисленного 1.18 ома до 1.26 ома путём замены. Мощность снизится на 8%, до 11W. Рабочее напряжение на группах светодиодов снизится до 73 Вольт, ток до 150мА, соответственно для одного светодиода 3.17В, 150мА, 0,47W.

Читайте также:  Quake live консольные команды

В лампах Космос AC 220V 3W на основе стабилизатора тока 200ма — микросхемы BP2812 (8 ног) (плата GL-0AC5W_V2.0) применяются 10 последовательно включенных светодиодов, на 30.7В 90мА, 2.8W, плата T2-P45-3W. От лабораторного БП ставлю 31.5В и эти светодиоды жрут 50ма и светят слабее, что говорит о нестандартном.. В схеме же осциллографом форма напряжения 31 В ровная, а до зеленого дросселя пульсации..

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление

230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондера есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

В лампах Космос basic A65 E27 25Вт 4500K 220В/50Гц 0,100A модель LED25wA65E2745 световой поток 2100 лм срок службы 25000 ч на основе стабилизатора тока — микросхемы HA5836AE (8 ног) (плата N018082 V1.1) применяются 22 светодиода (11 последовательных секций по 2 светодиода в параллель) на 99В 176мА, 17W, плата A65Y 2P11S N018080A. Для понижения тока нужно увеличить резистор 1R07 ом, до 1R30 (между 7,8 ногой и 1 ногой HA5836AE) — с 1,07 ома до 1.3 ома путём замены на 1R3 или на 1R0 и 0R3 ома. Мощность снизится на 19%, до 14W. Рабочее напряжение на секциях светодиодов снизится до 98 Вольт, ток до 146мА, соответственно для одного светодиода 8,9В, 146мА, 1,3W. Для справки, лампа потребляла от

220V 105мА 23W до переделки и 70мА 15W после.

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Если не опасно и есть возможность разобрать лампу — то желательно снять пластиковый или стеклянный стакан — стекло греть путем включения лампы )) — то это даст дополнительное охлаждение, а с исчезновением пластика немного повысит световой поток, но даст синеватый оттенок и точечные источники света будут слепить глаза при попадании лампы в зрительную область.

Если есть возможность намного более качественно улучшить охлаждение лампы путём установки горизонтально, в всегда холодном месте или путём разбора на составляющие и при разносе греющихся компонентов или установке их на массивные радиаторы, то можно снижать потребление лампы не на 30%, а на 10-15%. На заводе срок действия лампы точно посчитан на уровне 1 года — дешевые, 2 года — средние, 3 года — дорогие, поэтому важно сделать чтобы не ярко светило, а долго. Для яркости просто ставьте больше ламп.. Если не снижать рабочий ток, то через время деградируют и светодиоды, и конденсаторы..

Всё то же самое нужно делать и в процессе ремонта вышедших из строя ламп, в которых чаще всего горят светодиоды, а реже вздуваются конденсаторы. В лампах с последовательной схемой включения светодиодов сгоревшие закорачиваем (если последовательных две группы — то в каждой должно остаться одинаковое количество светодиодов), в параллельных все утухшие светодиоды меняем на целые (увы, или не будет работать группа, но можно с умом и коротить в каждой группе поровну), и обязательно снижаем ток (потому что все светодиоды немного деградировали или в схемах без регулятора тока возрос ток после закорачивания светодиодов).

Файл для расчетов

Оставляйте комментарии по файлу, кому что нужно рассчитать..

Тэги: LED driver, 9918C, BP3102, energo efficiency, LED lamp, Понижение яркости, Как уменьшить яркость, Уменьшаем светимость — увеличиваем срок службы. Срок жизни.

32 thoughts on “ Продление срока службы светодиодных ламп. Понижение тока/ремонт ”

После перегрева сгорели светодиоды на лампах с конденсатором 135. Замкнул в каждой лампочке светодиод и поменял кондёр на 105 (1 мкф), теперь чуть слабее светит, снял колпачок с лампы, но лампа так же горячая.

Надеюсь, что теперь проработает дольше.

А как быть с энергосберегающими лампами?

Занёс статью в заметки, спасибо за инфу.

Здравствуйте. У меня лампа 9W на основе мс9918с. Вылетел 1 светодиод-остальные15 целые. Подскажите какое нужно поставить сопротивление -чтобы еще поработала?Причина по всей видимости была в том-что именно под этим диодом отсутствовала паста/ктл. Спасибо.

Первое, нужно обязательно уменьшить ток через светодиоды, видимо, подошло время и будет цепная реакция, скорее всего будут умирать ослабевающие (перегретые и деградирующие).. Ну и улучшить теплоотвод (снять пластиковый колпачок, если нет влажности и лампу не заденут).. Отпишите сюда все параметры лампы и какие резисторы на средней ноге микросхемы? Если такие же, как в описании, то смело уменьшайте на указанные параметры.
Второе, у вас на микросхеме 9918C стабилизация тока и нет переходного трансформатора (как в сложных схемах светильников), и если один светодиод вылетел, то его нужно смело замыкать и не морочиться с резистором. Если бы вылетело много светодиодов и драйвер бы перестал запускаться, тогда..

Значит можно просто замкнуть светодиод.R-средней ноги 2.2ом.Использовать без рассеивателя не комфортно/смысл тогда этой лампы/.Значит важен ток-а то что 290в -не важно?.

Повышаем 2.2 Ома до 2.4 или 2.5 Ома — Если таких нет, то ищем два резистора 1R2 последовательно или два 5R1 или 4R7 параллельно, чтобы примерно попасть в 2.4 — 2.5 Ома..
Чем меряли 290 Вольт и где?

290- это на выпрямительном конденсаторе и на выходе на светодиоды/без нагрузки-не стал рисковать диодами.

должно быть постоянки 310V на конденсаторе — если в сети 220V переменки, мабуть кондёр усох..
290 на выходе на светодиоды — это без нагрузки, а при нагрузке нужно померять ток на светодиодах, потом изменить резистор и ещё раз померять для пущей проверки того, что ток через светодиоды уменьшился

У нас 200-это праздник.А так 170-180 иногда и160.Я понял -Спасибо.Но к сожалению омных сопротов и данный момент нет.Есть такие как и там стоят 2.2ом.Куплю-отпишусь.Кстати еще один вопрос.Есть светильник на 4 линейки по18 шт. На 1 выгорела мс и прилегающие к ней.На 2 потухли 3 линейки /4не стал ждать -отключил .Драйвер серьезный.На плате -JBTIW0401-006 REV 2.1 20130715 . МС IW3623-00 R2MGL тр-р D13007 тр-р7N65.транс.JBT-IW0401-29 и на выходе 3 ногий диод/нехочу тормошить а так не видно/.Как будто -работает но—-U-менятся от35 до 24 и обратно/без нагрузки/.Не подскажьте что ЭТО и как лечить?

Если без нагрузки напряжение после драйвера светодиодов скачет — это может быть нормально, запускается и отсекается по превышению напряжения или сбою частоты, перегрузке, отсутствию нагрузки.. Нужно проверять под нагрузкой, только тогда можно 100% сказать, робит он или нет, но можно и спалить все линейки светодиодов, если драйвер даст больше тока. а линейки можно заменять резисторами нагрузки — посчитать и поставить соответствующего сопротивления и мощности (если нет большой мощности, а есть в два-три раза меньше, можно резисторы поместить в стакан с водой, чтобы не сгорели от перегрева, в пять раз меньше по мощности горят и в в воде, тут поможет только жидкий азот )) )

Для проверки светодиодов берём лабораторный БП с регулируемой отсечкой тока и регулируемым напряжением, тестируем светодиоды и делаем выводы.
К примеру, DC DIY Kit плавной регулировкой ток короткого замыкания ОГРАНИЧЕНИЯ защиты 0-30 В 2mA-3A на али и индикатор 0-100В 0-10А, мощный трансформатор 80-100 Вт на 24-36В переменки в глуши не проблема найти из старого ТВ или муз центра..

Ставим ток 20мА и плавно повышая напряжение, проверяем линейки светодиодов, напряжение, при котором светодиоды ярко загорятся и есть рабочее минус 3-5%, если повысить напряжение всего лишь на эту самую мелочь 3-5%, ток возрастёт до рабочего, а это может быть и 50мА и 100мА для разных типов светодиодов.. Нельзя ставить ток 100мА, потому как если светодиоды на 50мА, они погорят сразу.
Если напряжения 30В не хватает зажечь всю линейку, то крокодилами цепляемся на один светодиод, вычисляя его рабочее напряжение, это может быть и 3, и 6, и 9, и 11 вольт. Ток определить сложнее по одному светодиоду, но можно посчитать потребляемую мощность всего светильника и поделить на кол-во светодиодов, получив мощность одного светодиода, а затем и его рабочий ток. Погрешность может быть до 20% и в плюс и в минус, посему проверяем себя дважды и трижды и в том числе по внешнему виду светодиодов, ища полный аналог.

Определившись 100% с напряжением и током линеек светодиодов, также понижаем ток в драйвере, чтобы не дожечь деградировавшие в тяжелых условиях светодиоды, какие можно закупить на али пачками на 100-200 р. Светодиоды лучше брать 2700К желтоватые, а не 6000К ярко синие (портят глаза, в них нет красного и в обоих нет зеленого спектра), и дополнять светильник отдельно зелеными светодиодами (для зрения, 18 лет дети в южной корее все слепые, а в этой стране максимум гаджетов и светодиодного освещения).

По вашему светильнику непонятно, на каждую линейку светодиодов отдельный драйвер с «мс» микросхемой? Если драйвер сдох, то, можно большой светильник запустить от драйвера одной светодиодной лампы, в которой импульсный токовый стабилизатор, к примеру с 300В на 110мА, 80В, 9W, и в четырех линейках светильника светодиоды на 55мА, 36W. Четыре линейки подключаются в параллель, получается 220мА 160В. Если они в пол-накала загорятся на драйвере без переделок, то ток на микросхеме драйвера светодиодной лампы повышается со 110мА до 200мА путём уменьшения токоизмерительного резистора меньше чем в два раза, дроссель (если будет греться) повышается по размеру в полтора-два раза при сохранении индуктивности (а это связано с микросхемой и с рабочей частотой преобразования) и ёмкости по 300В и по выходному повышаются в два раза по микрофарадам путём замены.. Микросхема импульсная, мелкая, может будет сильнее греться, и на неё нужно термоклеем приклеить радиатор..

Измерять постоянный ток на светодиодах до 200 мА можно прибором D-830B, как обычно, в разрыв цепи, а на 10А может быть погрешность..

Что непонятно, спрашивайте.

Спасибо за ответ.После праздников буду заниматся.Фото драйвера я скину Вам на почту. С НОВЫМ ГОДОМ. Здоровья и успехов во всех Ваших делах.

Читайте также:  Batman arkham knight разоружение карта

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

LED лампа выглядит вот так:


Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:


Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:


Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки.
• от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим.

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:


Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
• Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Ссылка на основную публикацию
Hyperterminal как вводить команды
Большинство модулей KernelChip (Ke-USB24A, Ke-USB24R, Ke-GSM, Ke-Box) определяются на ОС Windows / Linux как виртуальный COM порт. Для модулей существует...
Gsm gprs модуль a6 подключение к ардуино
В предыдущих главе мы рассмотрели мы сделали большие шаги построения "умного дома" – оснастили его датчиками и исполнительными устройствами и...
Hp 2530 настройка коммутатора
По умолчанию управляемые коммутаторы, в том числе коммутаторы HP серии Aruba, и данная модель в частности настроены на динамическую привязку...
Intentional policy rejection please try again later
Postfix (SMTP) Intended policy rejection, please try again later Sample error message in Postfix log file: Jul 24 06:43:08 mx0...
Adblock detector